10) Causality Check of LTI Systems Using
the Impulse Response

* Recall: A LTI system is said to be causal if the
output y(n)

* Goal: Develop the condition for an LTI system
to be causal in terms of /(n)

* Proof: Define 2 sequences x,(n) and x,(n) so
that x,(n) =x,(n) n n,

— system outputs:

y(n) =
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11) LTI Systems and Linear Difference
Equations

x(n) —» LTI —» y(n)

* An important subclass of LTI systems is
characterized by a linear difference equation
of the form:

y(n) =
(D

* Input/output relationship may be represented by a
block diagram
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* Example:
y(n)=byx(n)+bx(n-1) + bx(n-2)
y(m)=ay(n-1)+ay(n-2)+byx(n)+b;x(n-1) + bx(n-2)
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12) Impulse & Step Response and Difference
Equation

* Recall that

—» LTI [—» y(n)

Observation: The only thing we need to know about the
system to compute the output is h(n)

Example: You are given the I/O relationship to a system

y(n) =0.6y(n—-1)+ 2x(n)

« Compute and plot the impulse response h(n)
« Compute and plot the unit step response
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13) LTI Systems and Initial Condition Response

x(n) —» LTI —» y(n)

* Definition: The initial condition (IC) response of a LTI
system is the part of the response caused by initial
conditions (sometimes called the “zero-input response”

* Why is the IC response important ?
—> 1t plays a role in evaluating the stability of the system

{

* Definition: The LTI system is said to be stable if the IC
response approaches 0 as 77 —> o0
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« Example: y(n)=ay(n-1)+x(n) with y(0)=K

* Recall:
The LTI system 1is said to be stable if the IC response
approaches 0 as 77 —> ©
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» Example: y(n)=0.6y(n-1)+2x(n) with y(0)=1
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* [C response and generic LTI IO relationships

y(n)—ay(n-1)—...—ayy(n—N)=byx(n)+---+bx(n—1)

* Recall:
The LTI system 1s said to be stable if the IC response
approaches 0 as 7 —> ©
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* Special case for the solution when the characteristic
polynomial has multiple roots.

Given the IO relationship:
y(n)-ay(n-1)-...—ayy(n—N)=bx(n)+---+bx(n—1)

Resulting characteristic equation is of the form:

Assume the characteristic equation has a root r; of
multiplicity L and the other roots are distinct
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« Example: y(n)=-0.3y(n-1)+0.4y(n-2)+0.5x(n)+0.5x(n-1)
y(-1)=y(-2)=1
Compute:
1) the characteristic equation
2) the characteristic roots
3) the stability condition of the system
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» How to check that the solution 1s valid ?
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14) Linear Difference Equation and Total
Solution

x(n) —» LTI —» y(n)

y(n)—ay(n-1)—...—a,y(n—N)=byx(n)+---+bx(n—1)

* Total solution calculation

— Procedure to compute the solution to (1) is
similar to solving differential equations

y(n) =y (n)+y,(n)

v N\

Solution of (1) when x(n) =0 Solution of (1) for x(n) # 0
— complementary solution — — particular solution —
Solution depends on the Solution depends on the
initial conditions input only
N\ J
g

Constants computed by using the total solution
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a) Complementary Solution

* Equation to solve for n >0
y(n)—aly(n—1)—...—aNy(n—N) =0
initial condition y(—1) ... y(=N) given
* First assume y (n) ="

— )’c(n)—alyc(n—l)—...—aNyc(n—N):

= General form of complementary solution is
1s given by:

yn)=
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b) Particular Solution

* Equation to solve
y(n)—aly(n—l)—...—aNy(n—N):box(n)+---+bﬁx(n—€)

* Pick x(n) and assume that particular solution is
of the same general form as the specified x(n)

Shape of x(n) Shape of particular
solution
C1 C2
Kn Kin+K;
K1a” Kgan
Ka"cos(no) K; a"cos(n6+K,)
Kcos(no) K4 cos(n6+K,)
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Example:

Find the total solution for n > 0 for
y(n)+y(n —1)—6y(n —2) = x(n)
a) When x(n) = 8u(n) and 1nitial conditions
y=D)=1,y(-2)=-1
b) When x(n) = 2"u(n) with y(—1) =1, y(-2) = -1
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* Example: Find the solution for n» > 0 to
y(n)+0.5y(n—1)+0.4y(n—2) =0

when initial conditions are y(—1) =—-0.8; y(-2) = 0.5
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Example:

Find the total solution for n > 0 for
y(n)—y(n—1)+0.5y(n—2) =0
initial conditions y(—1)=-0.8, y(-2) =0.5
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Example:

Find the total solution for n» > 0 for
y(n)+y(n —2) =x(n)+x(n—1)
initial conditions y(-2) =-10, y(—1) =0, x(n)=10u(n)
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15) Impulse Response and Difference
Equation

* Recall that

—» LTI +—» y(n)=hn)

Example: Compute the impulse response to the
system

y(n)+y(n—1)—6y(n—2):x(n)

with x(n) = 8u(n); y(-1)=1; y(-2)=-1
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16) System Output Computation Using
MATAB

* Given
y(n)+ay(n-1)+---+ayy(n-N)=
+byx(n)+---+b,x(n—L)
* Pack coefficients in two vectors:
A=|
B=|
* Output vector y{y(0),y(1),-,y(k)}
to input vector x{x(0),x(1),---,x(k)}
is given by
y=

Example: Assume you want to average 10 input
data points

y(n) = (x(n) ++-+x(n-9))
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